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Determination of many-body interactions between particles of arbitrary shape 
in a viscous fluid is a key problem in the simulation of concentrated suspensions. 
Three-dimensional flows involving such complex fluid-solid boundaries are 
beyond the scope of spatial methods, even on supercomputers. Boundary 
integral methods convert the three-dimensional PDE to a two-dimensional 
integral equation. Unfortunately, conventional boundary methods yield 
Fredholm integral equations of the first kind, and dense linear systems which 
are too large for accurate solution. We have pursued a different boundary 
integral fi~rmulation, which yields Fredholm integral equations of the second 
kind; these are amenable to iterative solution. The velocity representation 
involves a compact operator, so a discrete spectrum results. Wielandt deflations 
give dramatic reductions in the spectral radius and accurate solutions are 
obtained after only a few iterations {typically less than 10). An analytic 
construction of the spectrum for sphere sphere interactions confirms these 
numerical results. The mathematics is similar to that encountered in the mixing 
of d-atomic orbitals to form bonding/antibonding molecular orbitals in transi- 
tion metals. The memory-saving version of our code can be implemented 
directly on a dedicated MicroVAX lo solve problems involving clusters of less 
than a dozen particles. For a fixed number of processors, the algorithm grows 
essentially as N ~', where N is the system size, so computational times are readily 
estimated on more powerful super-minicomputers and supercomputers using 
standard "dot-product" benchmarks. The algorithm is especially ideal for 
gigaflop and teraflop parallel array processors under construction in a number 
of computer companies; an analysis of the spectrum reveals that asynchronous 
iterative methods will converge, leading the way to a rigorous formulation of 
screening concepts for suspended particles of arbitrary shape. 

KEY W O R D S :  Suspensions; rheology; boundary integral method; parallel 
computing. 
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1. INTRODUCTION 

The interactions between submerged particles in a viscous problem are 
quite strong and long range in extent, decaying as r t and r 2, depending 
on whether the particles exert a net force on the fluid or not. A fast and 
accurate method for solving these N-body problems, for particles of 
arbitrary shape, in both bounded and unbounded flow domains clearly 
would be of great value in suspension simulation~ either from the viewpoint 
of ab initio simulations, or for testing of popular approximations. Over the 
years, this lack of exact results has lead suspension theorists to develop a 
number of approximate approaches, the most important examples being 
cell models, periodic arrays, and self-consistent field theories. In addition, 
suspension simulations have simplified interactions using pairwise 
additivity and screening concepts. An overview of these approximations 
and the fair amount of success obtained in the modeling of suspensions of 
spheres is given in the review article by Brady and Bossis t~ and the book 
by Happel and Brenner. (21 

Over the past two years, our group at Wisconsin has developed a new 
approach to the problem of many-body interactions in a viscous fluid. The 
end results are numerical methods that can handle particles of arbitrary 
shape in both bounded and unbounded domains, and are based on fast 
iterative algorithms designed for conventional surpercomputers with vector 
operations, as well as parallel computers with multiple processors. An 
interesting aspect of this suspensions research is the central role played by 
a number of ideas from linear operator theory and numerical functional 
analysis. The fast iterative algorithms are intricately linked with these 
concepts and could not be devised otherwise. The velocity representations 
used in our work are not based on Green's identities, but instead stand on 
existence theorems of the Fredholm-Riesz-Schauder theory for integral 
equations with weakly singular kernels. Furthermore, the extraction of 
physical results such as the particle mobility, stresslet, and surface tractions 
is based on concepts from linear operator theory. 

Two earlier articles (Karrila and Kim ~3) and Karrila et al. (4~) derive 
most of the fundamental ideas used here. The first paper deals with the 
existence of the velocity representations, including numerical examples 
involving particles of extreme aspect ratios and sharp corners, while the 
second describes the development of iterative algorithms, especially those 
designed for parallel computers. The most complete (140 pages) exposition 
of this method may be found in Chapters 14-19 of An Introduction to 
Microhydrodynamics by Kim and Karrila.(S! In this article, we focus on 
those issues related to the application of the method to the solution of 
many-body mobility problems, to provide a permanent record of the 
presentation at this conference. 
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2. THE COMPLETED DOUBLE-LAYER BOUNDARY INTEGRAL 
EQUATION 

Three-dimensional flow problems with complex moving boundaries, 
even if only for a small representative sample of concentrated suspension 
configurations, seem to be beyond the scope of spatial methods, such as 
finite elements and finite differences, in the foreseeable future (Fig. 1). 
Instead, we start with the governing Stokes equations for an incompressible 
Newtonian fluid of viscosity/~, 

- V p  +#V2v =0, V - v = 0  (1) 

and reformulate them as a two-dimensional (boundary) integral equation, 

The unknowns correspond to the surface tractions t = 6 . n  and surface 
velocities v,.. Here, [] is the surface normal pointing out of the particle and 
into the fluid. The symbol ~ denotes the Oseen tensor, the fundamental 

Complex Microstructures in a Viscous Fluid 

�9 Structures composed of M functional units 
| Units described by N boundary elements 
�9 Large system of equations: 31VlN by 3MN 

. . . . . . . . . . . . . . .  sharp corners  
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Fig. I. Some difficult geometries encountered in suspension simulations. 
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solution or Green's function of the Stokes equations, which is given 
explicitly by 

! . t 
(3) 

The integral representation given above has a long history dating back at 
least to Lorentz, (6) and numerical solution of the Stokes equations via 
discretization of this equation is also well knownJ 71 The two integral terms 
on the RHS of the integral representation are known as the single-layer 
and double layer potentials, (s~ in analogy with the corresponding termi- 
nology in electrostatics. The kernel of the double-layer term is given by 

K(x - ~ ) =  -2n(~) . s  - ~ )  

where E(x) is the stress field of ~.4(x}/8gp, or, more explicitly, 

3 XXX 
Z(x)= 4~lxl ~ (5) 

We define K with the factor of 2 so that its eigenvalues will be between • 1, 
as shown presently. When the boundary velocities are provided, the 
integral equation becomes a Fredholm integral equation e~f the/i'rst kind 
with the tractions as the unknown density. 

The reduction in dimensionality represents a significant advantage in 
numerical solution of the Stokes equation. However, a direct application of 
this boundary integral formulation is not feasible for two important classes 
of hydrodynamic problems: geometries with sharp surface curvatures ~9~ and 
many-body problems. Indeed, this observation is a well-known result from 
the theory of linear operators and integral equations. The single-layer 
integral operator is compact, and in infinite-dimensional Hilbert spaces, the 
inverse of a compact operator is unbounded. Thus, in the sense of Hadamard, 
Fredholm equations of the first kind are ill-posed, since very different 
inputs are mapped by the compact operator to very similar outputs. This 
ill-posedness is not apparent in problems where coarse meshes yield 
acceptable results, such as flow past a single sphere. ~7~ 

Now first consider a boundary geometry possessing sharp curvatures, 
either in the form of grooves and protrusions on a single particle surface, 
or in the form of narrow necks of interstitial regions formed by particles 
near contact. Then the ill-posedness of the Ffedholm integral equation of 
the first kind cannot be avoided. The ratio of the largest (normwise) to 
smallest eigenvalue becomes increasingly large with increasing surface 
curvature and narrowing neck thickness. For example, for two spheres near 
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contact, this ratio scales as O(n), where n is the number of terms retained 
in the twin-multipole expansion representation of the two-sphere velocity 
field. 15~ Naturally, discretization of an ill-posed problem encounters the 
associated problem of ill-conditioning, and since the solutions of interest 
for two almost-touching particles contain highly oscillatory components, 
rcgularization procedures are not easily implemented. 

Second, consider many-body problems or any other situation where a 
large number of boundary elements is required to resolve the surface-shape 
in a faithful manner. The solution of dense systems of the kind obtained 
above is an expensive proposition. On the other hand, our formulation of 
the boundary integral equation is amenable to fast iterative solutions. 
Indeed, large systems on the order of 10,000 by 10,000 have been solved 
without difficulty on minicomputers, and larger systems on the order of 
1,000,000 by 1,000,000 are easily solved on conventional supercomputers. 
Since the method allows tradeoffs between processor workloads and 
memory usage, the future potential of this method is limited only by 
economic constraints on the design of new advanced computer architectures. 

What follows is a summary of the development of our alternate integral 
representation for flow past a single particle, which leads to a Fredholm 
equation c~['the second kind, an idea first espoused by Power and M iranda.l~~ 
We then discuss how this idea can be extended to multiparticle settings in 
both bounded and unbounded flows. We then present a summary of an 
iterative method for solving the resulting second-kind equations, with more 
details given in a subsequent section. 

From Odqvist's work Is~ we know thai the double-layer potential is 
discontinuous at the surface. Specifically, the jump is exactly twice the local 
value of the the double-layer density, so that at the point x on the surface, 

(7) 

Clearly, an integral representation based on just the double-layer 
potential alone, 

v(x) = !, K(x -  ~) �9 ~ )  dS(~), x~ v~ (8) 

after imposition of the no-slip boundary condition, v(x)=v,.(x), x ES, 
yields the boundary integral equation, 

V,(x) = q~(x) + ~s K(x - ~) �9 q~(~) dS(~), x s S  (9) 
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This is a Fredholm integral equation of the second kind. Unfortunately, 
most flows of interest do not fall into this category, because the double- 
layer potential alone cannot represent flows that exert a net hydrodynamic 
force or torque on the submerged body. This is precisely why the single- 
layer potential is needed in Lorentz's representation. The key idea in the 
work of Power and Miranda is that the single-layer potential may be 
replaced with the velocity fields of a point force and point torque, leading 
to an integral representation of the form 

v ( x ) = - F  Hya (r THY a f~(X) 8~ x 8-g~7 + ~; K(x - ~) �9 ~(~,) d s ( ~ ) ,  ~Io) 

Here, F Hya and T rtyd are the hydrodynamic force and torque on the 
particle, 

T uya x :#(x) = T "yd x 
x 

is the field of a rotlet or point torque, and q~(~,) represents the unknown 
double-layer density which is to be found. The operator notation, 

will be used for the last term in the boundary integral equation. 
Note that this introduces six new unknowns (the three components of 

the force and torque). However, as we would expect from the Fredholm 
alternative, the null space of l + J f  is nontrivial; in fact, N ( I + Y ) =  
R(I +Jt~*) ~ and since there are six "independent things" missing from 
the range [dim R ( l + g U , * ) l = d i m R ( l + J { ) •  there should be six 
linearly independent nontrivial null solutions of the equation ~ + .~,(q~)= 0. 
These are in fact the six independent rigid-body motions of the particle 
surface. The removal of this degeneracy provides exactly the right number 
of new equations, thus providing a unique solution. Instead of this inter- 
pretation, Power and Miranda chose to associate 

F~ yd = - ~ e,. ~p(~) dS(~) = - (e,,  q~(~) ) (12) 

T,nYd ----- --~ (e,x ~)'q~(~) dS(~)--- - (e~x ~, ~a(~)) (13) 
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and the bulk of the original article deals with the proof that the linear 
operator 

~(x) ~(x)" 1 ej <ej, ") "8-~- + ej(ejx {, ") x 8 ~ , / + X  
j= l  

possesses a unique inverse. 
The broader former interpretation, using the dimensions of the various 

subspaces associated with 1 +,3r was first given by Karrita and Kim, ~3) 
along with a number of different completion schemes for multiparticle 
problems in unbounded and bounded flows. The entire class of boundary 
integral equation methods based on the idea of completion of the double- 
layer operator, naturally, are called completed double-layer boundary 
integral equation methods'. 

The most interesting completion scheme occurs for mobility problems 
where the force and torque on each particle are specified, and the unknown 
particle motions are to be determined (this category of problems includes 
two important problems in suspension theory: determination of the tracer 
diffusion coefficient and determination of sedimentation velocity). For 
mobility problems, we write the boundary integral equation as 

U + O } X X = - F  Hyd ,~r THyOx:~(x)+(p(x)+,#.((p)  ' x E S  (14) 
8rqz 8zt/~ 

where U + m • x is the rigid-body motion to be determined. (For the sake 
of clarity, we have written' the equation for just the single-particle 
problem. ) 

The system of equations is completed by adding the six extra conditions 
of the form 

ui  = _ ~ e/ .  (p(~) dS(~)  
dS(~) (15) 

~ (e, x ~).~(~) dS(~) 
( o l x x ) =  - ~ (e, xx)  (16) 

,=, :f (ej x ~,)" (ej x ~,) dS(~) 

The expressions appearing in the denominators have been introduced for 
normalization purposes. Insertion of these six equations into the boundary 
integral equation yields 

~(x) 
2 ~(J)(q) '  II~(J) ) + ~(X) Jr-,k(('(~) = F Hyd. (~(x) -{" THY d X - -  

i = ~ 8rtp 8~,u 
(17) 
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or 

_ _  : ~ ( x  ) q~(X) + ,~/(~) = FHYd. f~(X) +T tOd  X - -  (18) 
8~/~ 8~t~ 

The operator Jg defined above is obtained from Wielamtt dqflations of the 
double operator ,~, since eJ and ej• x, .j = t, 2, 3, are the six null eigen- 
functions of the operator 1+ .~ .  We reserve the notation ~J), .j= 1 ..... 6, 
for the orthonormalized null eigenfunctions, i.e., (~Jl,  ~lkl> ='Sik" 

This system of equations now has a unique solution. Further details of 
this version of CDL-BIEM, and the subtle details associated with the 
multiplicity of the eigenvalues and the necessary multiple Wielandt 
deflations, is presented in a later section, since it requires a detailed under- 
standing of the spectrum of the double-layer operator in the more general 
many-body setting. 

We conclude here by noting the advantages of the second-kind 
formulations over those based on the first kind. Upon discretization, the 
linear system from second-kind methods are well-conditioned, with very 
large elements on the diagonab Andeed, the ratio of off-diagonal to 
diagonal elements scales with the mesh size of the boundary integral 
method. Thus, while very fine scale discretizations inevitably Dead to 
increased computational costs, this loss is partially offset by the increasing 
disparity between the diagonal and off-diagonal elements. Furthermore, the 
form of the second-kind equation usually leads to an iterative solution and 
these in turn are readily implemented on a wide range of computer 
architectures, including those from the rapidly developing field of parallel 
computers. 

3. EXTRACTION OF PHYSICAL QUANTITIES 

If we accept the premise that the most important objectives of the 
numerical calculations are the resistance/mobility relations, the surface 
tractions, and, in the case of bulk stress calculations, the stresslet on the 
particle, then postprocessing is clearly necessary with CDL-BIEM, for the 
double-layer density ~p obtained as the solution is not one of the primary 
physical quantities of interest. Fortunately, the completion procedure 
furnishes directly the resistance or mobility relations, as we have seen 
above. In fact, by picking as unknowns an appropriate pair from the set 
(F Hyd, T ~yd, U, ~), we have the capability of solving any combination of 
resistance and mobility problems directly. This is important for suspension 
simulation work because the principle of first solving a canonical set of 
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resistance problems and then combining linearly to obtain the desired 
mobility or mixed problem becomes impractical in many-body systems. 

In the following discussion, we show how the rest of the primary 
physical quantities of interest, surface tractions and stresslet, may be 
extracted from the CDL-BIEM solution. 

3.1. Surface Tractions in Resistance Problems 

For the special case of known rigid-body motion in the linear ambient 
field v ~ = U ~ + f ~  • x + E ~ �9 x, Karrila and Kim ~3'5~ have shown that 
tractions can be obtained directly from the double-layer density, without 
resorting to the Newtonian constitutive equation for the stress (which 
requires differentiation of the velocity field). We show here how the 
tractions for a particle in steady translation are obtained. All others 
tractions in resistance problems are obtained in an analogous fashionJ 5~ 

Using the Lorentz reciprocal theorem, ~ the drag on a particle in 
arbitrary ambient Stokes flow v ~ may be expressed as 

e,-F Hyd= ((~RBM. n)lit, v"') (19) 

where ta RBM'n) liJ is the traction produced when the particle is in rigid- 
body translation in the ith coordinate direction. 

If we interpret the preceding inner product as a linear functional 
mapping v" to F tlyd, then (t~ RBM" n) (i) is the unique "vector" that performs 
this role (Riesz representation theorem of linear operator theory). 
However, the hydrodynamic force calculations in CDL-BIEM are always 
of the form 

ei �9 F Hy'~ = (C, ~)  (20) 

with q~=A t(v~), so that 

e , .FHyO=(C,A ' (v"~))=((A m)*(C),v~) (21) 

from which it follows that 

(a~l~M.n)~l= (A t)*(C) (22) 

In Fig. 2, we show the agreement between the numerical implementa- 
tion of this procedure and the analytical result (solid line) for the traction 
on a prolate spheroid. The two discrete curves indicate slightly different 
discretizations. 
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Fig. 2. The x component of the Iraction, ~*n = A(z)cos ~b, on a proJate spheroid ~ff aspect 
ratio 10 in transverse (x direction) translation. The solid line is the analytical result 

3.2. Surface Tractions in Mobility Problems 

Again, consider mobility problems where the force and torque on each 
particle are given, but the particle rigid-body motions relative to the 
linear ambient field v ~ =  U ~- + f U  ~ •  + E  ~ "x are to be determined. In 
such problems as well, the surface tractions can be obtained without 
differentiation of the numerical solution by use of the Riesz representation 
theorem. 

Let v, ( = - v  ~) be a given velocity field on the particle surface, v RSM 
the velocity field corresponding to total force F "yJ and torque T Hyd 
(mobility solution), and u R"M= U + o~ x x be the RBM velocity such that 
the flow corresponding to the boundary condition v , -  u ~nM exerts no net 
force or torque on the particle. 

The key step is an identity obtained from the Lorentz reciprocal 
theorem, 

(U,  n "  6(V RBM) ) = U -  F Hyd + I1). T Hyd (23) 

This  shows the physical significance of mobility-based tractions--they map 
a given velocity field Vs to (components of) such an RBM which absorbs 
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the total force and torque, as claimed above. To derive this, we reason as 
follows: 

0 = <n. ~(v,.- u ~ ) ,  v ~B~ > 

~- - - < U  RBM, n" o(vRBM)> + <V,, n" ~(vRBM)> 

= - - ( U "  F Hyd + f~" T Hyd ) + <Vs, !!" O'(yRBM) > 

It may be helpful to see how this works out for a single sphere. According 
to the Fax6n law, r a force-free sphere or radius a, subject to the boundary 
condition v.. must translate as 

U =  v.,. + s-  V 2v.,. = v~dS (24) 
.~ = o 4na 2 . 

so that 

u . v . , d  = 1 ~ u . F , , d d S =  l_~__<u,F,yd> 
4za 2 Js, 4~a 2 

which correctly identifies 

(25) 

F H yd 

o" n -- 4~a2 

as the surface tractions on a translating sphere on which a force F Hyd is 
exerted by the fluid. Again, to repeat the main theme: the Riesz theorem 
guarantees both the existence and uniqueness of these mobility-based RBM 
surface tractions in this role. 

We now consider the link between this result and the boundary 
integral equation. Given a surface velocity field v, that originated from a 
Stokes ambient field, we construct the mobility problem of a force-free and 
torque-free particle. The relevant boundary integral equation is 

6 
q~(/~<q~, ~r = - ( 1  + ,~f')q~ + v~. (26) 

.j= 1 

The Stokeslet and rotlet fields are absent from the boundary integral 
equation since the particle is force- and torque-free. The rigid-body motion 
(as yet unknown) has been replaced by the deflation terms, here represented 
in a condensed inner product notation in terms of the six null solutions, q~(/). 

The rigid-body motion is completely determined by the inner products 
on the LHS of the previous equation. Consider one such inner product. 
The mapping v.~-, (~,  ~.i)> is a linear functional, and thus by the Riesz 
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representation theorem, this image is of the form (v,,  t )  for some fixed 
vector t. We will see below that this is a traction for some rigid-body 
motion, t = o(VRaM), and then the only question that remains will be the 
identity of V RSM. We fix t and insert arbitrary surface fields u in Eq. (26). 
If u e R(1 + ~(), the RHS of Eq. (26) vanishes; therefore, so must the inner 
product on the LHS. Since this inner product also equals ( v ,  t )  by the 
definition of t, we have the result t 3_ R(I + , ~ ) ,  and therefore, from the 
Fredholrn alternative, t 2.N(! +.#f*). This identifies t as a traction from 
some rigid-body motion V RSM, because Odqvis( ~ has shown those are the 
only nontriviai null solutions of the adjoint operator. Now we identify 
V RBM. 

We take the inner product of t and both sides of Eq. (26) to obtain 

(V,, t )  = (~(J), t (vRI3M))(~,  (O (j)) 

3 6 
= E (v.rd.  ~J))(,~, ,,,J)> + ~ (T),,d. q,,~))( .~, ~,J,> 

j= I /~4 

where F HyJ and T "yd are the force and torque (relative to the center of 
mass of the particle surfacC 5~) exerted by the fluid on the particle in rigid- 
body motion V R"M. 

We are now ready to extract tractions from mobility problems, using 
the previous result in the reverse way. For mobility problem with F ~yJ and 
T Hyd given, we define 

3 6 
~g = E ~ (j'(FHyd" ~(Jl) + 2 ~ (i'(THyd " ~('/J) (27) 

.J= I j=4 

Then for any ~, we have 

(~0, (1 + ~ * ) t )  = ((1 + YF)q~, t )  = ( v ,  t )  = ~ ,  ~ )  (28) 

so that t = n" • RaM) can be solved from 

(1 + ~ * ) t  = q)~ (29) 

As far as the discretized equations are concerned, this is just a s~mple 
matter of solving a second system of equations using the transpose of the 
system matrix from the original problem (mobility relation calculation). 
These ideas are readily extended to multiparticle problems. (5~ 

3.3. Stresslet  for  Bulk Stress Calcula t ions 

The traction calculations of the preceding sections apply only to rigid- 
body motions in a linear field. For tractions in arbitrary ambient Stokes 
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flow, there are no direct methods for the tractions using a second-kind 
formulation. This is readily established from the fact that second-kind 
equations involve operators that are compact perturbations of the identity, 
while the mapping from surface velocities to surface tractions involves an 
unbounded operator. Fortunately, the one moment of the surface traction 
which, together with the force and torque, is of great physical significance 
--the stresslet (or symmetric force dipole)--can also be obtained from the 
CDL-BIEM formulation. 

The bulk stress (gofr) in a suspension may be expressed as a sum of 
solvent (~)  and particle contributions, ~21 

o'r = o "~ + (nS)  (30) 

where the stresslet S on each particle is defined by 

S - 2  s~ [ ( ~ ' n ) ~ + ~ ( ~ ' n ) ]  dS 3 s, 

The stresslet on any particle in the suspension can be obtained exactly from 
the double-layer density by the relation 

S = -2/~ ~ (n~ + ~n) dS(~) (32) 
S 

where the surface integration is only over the particle of interest. The 
implementation of this work to suspension theology is thus feasible. The 
derivation of the preceding result follows from an expansion of the double- 
layer potential in terms of the multiple series. The stresslet is simply the 
coefficient in the term that decays at r 2 

4. ITERATIVE SOLUTIONS 

It has been noted earlier that boundary integral equations lead to 
dense linear systems upon discretization. In contrast to spatial methods, 
where equations link only nearby neighboring nodes or elements and thus 
lead to sparse systems, the discrete equations in the boundary integral 
method link all elements, for the kernel in the integral equation is the 
Green's function (or its derivatives), and can propagate long distances 
through the fluid. Thus, when dealing with many-body problems, we face 
the prospect of solving very large, dense systems. For the sake of argument, 
consider a cluster of N identical particles in an unbounded domain. If each 
particle is resolved by M boundary elements, the system size is 3MN by 
3MN, and for M = N =  100, we already reach a size of 100,000 by 100,0(D-- 

822/62/5-6-21 
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and this is for just one configuration or time step. Iterative methods are the 
only realistic approach for the problem at hand. 

Integral equations of the second kind lead to discretized systems of the 
form x = M x  + b, suggesting an obvious iterative algorithm. The convergence 
of iterative methods of the form 

x,,+ 1 = M x ,  + b (331 

depends on the eigenvalues of M. The precise statement is that the 
iterations converge to the solution if and only if all eigenvalues of M have 
norm less than one. If this condition is met, the rate of convergence is 
ultimately dictated by the largest eigenvalue. With each successive iteration, 
the "distance" of approximate solution x,  from the actual solution will 
diminish by at least a factor equal to the norm of this dominant eigenvalue. 

4.1. Spectrum of the Double-Layer Operator: Deflation and 
Iteration 

The double-layer operator .~  has eigenvalues of the form '~'~ 

E , ) _  E,,~ 
2 = (34) 

E ~  + E~O~ 

where E "~ and E ~~ are the energy dissipation rates inside and outside the 
surfaces, of the velocity field produced by the eigenfunction acting as a 
double-layer density. The energy dissipation rates are nonnegative real 
numbers, and therefore the eigenvalues of ~ lie on the real line between 
- 1  and 1 (inclusive), with the end points of the spectrum corresponding 
to a zero velocity field on one side of the particle surface. For the N-particle 
problem, the dimension of the eigenspaces for the eigenvalues at - 1 and 
! are 6N + C and N +  6C, respectively, where C is 0 or 1 depending on 
whether the domain is unbounded or bounded by a container walt. Thus, 
for the iterations to converge, these eigenvalues must be moved inward. We 
will devise a procedure that actually moves them to zero (a procedure 
known as deflation). We mention in passing that the better known electric 
double-layer operator, which plays an analogous role in the solution of the 
Laplace equation, has eigenvalues only on one side of the origin (see for 
example, the exercises in Chapter 7 of Friedman~31), so the deflate-and- 
iterate approach given below is even easier for the Laplace equation. 

We digress briefly to consider an analytical example, before proceeding 
with the general algorithm. For the case when S is the surface of a single 
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isolated sphere, the spectrum of ~ has been determined analytically."" (4) The 
explicit result for the eigenvalues are: 

- 3  
Branchl :  (n~>l) 2n= (35) 

2n+  1 

- 3  
Branch 2: (n />l )  2 . -  (36) 

(2n - 1 )(2n + 1 ) 

3 
Branch 3: (n/>0) 2 n -  (37) 

2 n +  1 

with the degeneracy of 2n + 1 at the index n for each branch. After the 
eigenvalues at + I  are removed by deflation, the iterations converge to 
three significant figures after five iterations, because the spectral radius of 
the deflated system is only 3/5. 

Some completion procedures increase the spectral radius. We have 
developed (4~ the completion procedure for the double layer which also 
simultaneously shifts all eigenvalues 2 = - 1  (i.e., the eigenvalues associated 
with the eigenspace corresponding to the null space of 1 +o,U) to the 
origin, by a procedure known as Wielandt's deflation. In general, the term 
deflation refers to algorithms for moving eigenvalues to the origin. 
Wielandt's deflation uses only the eigenvectors of the operator, and not 
those of the adjoint. (For our problem, at 2 = -1 ,  the eigenfunctions of .g/ 
are known analytically, since these are the rigid-body motion null solutions, 
while the eigenfunctions of .gff* are unknown.) The major disadvantage of 
Wielandt's deflation is that the eigenvectors of the deflated system are 
unknown. Consequently, Wielandt's deflation is usually a sequential opera- 
tion, with deflation interlaced with eigenvector calculations. However, by 
using an orthonormal basis, the entire eigenspace can be deflated in 
simultaneously. (4) To execute Wielandt's deflation for an N-particle system 
in unbounded flow, we complete the double layer and obtain a unique 
solution by requiring 

3 3 

i=  I i~  ] ,S'a 

6 

--I[I~[~IX ( X - - X ~ ) =  E {~(i,~) f ~(i, ct).~d S ( 3 9 )  
i ~ 4  S~ 

where {q~'=~}, i = 1 ..... 6, ~ = 1 ..... N, form an orthonormal basis for the null 
space. On each particle surface (fix c~) the first three null functions are, 
except for constant scale factors, simply the unit coordinate vectors, while 
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the last three are rotations about the coordinate axes, again with constant 
scale factors (the moment of inertia per unit mass, about those axes). We 
substitute the expression for U ~ and oW ~ into the boundary integral 
equations (14). In operator notation, we see that , #  is replaced by 

(40) 

Each ~u.~) is still an eigenfunction, but now its eigenvalue is 0. Generalizing 
this process to all particle surfaces, we shift all 6N eigenvalues of .~  at - 1 
to 0. This can be visualized most readily in the Jordan canonical form of 
the system�9 The following example, with matrices from Karrila et al., ~4~ 
illustrates the essential ideas behind the method. The addition of the term 

can be described 

0 

0 

0 

0 

i 

pictorially as follows: 

0 0 0 -.�9 

- I  - 1  0 .-. 

0 - 1  0 .-. 

0 0 2 7 -.�9 

0 0 0 ...  

10 x x X ., .  

x 0 x X ..- 

x x O X . , .  

0 0 0 Z7 - "  
: : : : 

0 0 0 0 ..- 

0\ 
0 

0 

0 

1 

X~ 

X 
X 

0 

1 

i 

(41) 

Wielandt deflation destroys the Jordan form, but the matrix remains block 
triangular�9 

The 3 by 3 blocks on the upper left corner of these matrices represent 
schematically the 6N by 6N blocks of the actual system of equations. This 
entire block gets mapped to zero, i.e., the x 's  are zero, i f  and only i f  an 
orthonormal basis is used for  the deflated eigenspace. It is important to do 
so, since with x 's  zero, the deflated matrix will be triangular as opposed to 
just block triangular, and the eigenvalues may be read off the diagonal. 
Note that the eigenvalues of a block-triangular matrix are given by those 
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Illl ] - 1 L  I0 1 

~ s p e c t r a l  radius of deflated system 

Fig. 3. The discrete spectrum of the compact operator .~ff. The origin is a limit point. 

of the diagonal blocks and this implies that the remaining eigenvalues not 
at - 1  have not been shifted. Finally, we stress that the Jordan canonical 
form is used only to simplify the exposition; in actual computation, we do 
not need to find the Jordan form. (Our illustration applies to the original 
system, since similarity transformations to and from the Jordan form 
preserve eigenvalues. ) 

The double-layer operator is compact ~j3'14~ and so a central result 
from the spectral theory of compact operators applies: the set of eigen- 
values (spectrum) of a compact operator is discrete, with at most one limit 
point, which, if present, can be only at the origin. A typical spectrum for 
the double-layer operator ,~  is shown in Fig. 3. After deflation of the 
eigenspace at - 1 ,  we may use relaxation methods to solve the system, 
since an appropriate choice of the relaxation parameter yields a spectral 
radius of less than one. However, an even more efficient iterative scheme is 
obtained by first deflating the eigenvalues at 2 = 1, as shown in Fig. 3. This 
is possible since the eigenfunctions of ~ *  are also known analytically at 
2 = 1. ~41 

The explicit procedure for deflating the eigensystem at 2 =  1 is as 
follows. Let (b be an eigenvector for the eigenvalue 2 of the adjoint, denoted 
by ,g, *. For the discretized system, 

.~ff*(~)=2~ or [,~ff*] '(~b)=2 '~  (42) 

Then 

so that 

q 
( ,g/+ qO~b').~ ~= 1 +q([~,~*] "qS(b')'= 1 + ~ 0 ~ '  (43) 

( q )  ,8" ~ = (,~f + q ~ ' )  ' 1 + ~ ~bq3' (44) 
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where q is an arbitrary parameter which we shall set presently. Thereforc, 
the problem ~ ( x ) =  b has the solution 

( q )  X-.=(,~, -l-q~p~gt) l l +-~(p~O' b (45) 

so that the same solution is obtained from the system 

q , , 
, ~ (x )  + qqS<r x )  = h +- ;  q~ < ~o, b ) 

A 
{46) 

If we set q - i =  _l~bl2, then the eigenvalue 2 =  1 in the original problem is 
now at 0 in the modified system of equations, while all other eigenvalues 
remain fixed. 

In the Jordan canonical form, the "before" and "after" pictures of the 
deflation of 2 = 1 are as follows: 

[ ,# ]  = 

/0 0 0 X .. .  

0 0 0 X .-- 

0 0 0 X ..- 

0 0 0 2 7  .-. 

0 0 0 0 ...  

X 

X 
[.~-I~1 0 

1 

/0  0 0 X ... Y~ 

0 0 0 X ... Y 

0 0 0 X ... Y 

0 0 0 2 7  -.. Y 

0 0 0 0 --. 0 

The placement of Y's in the last column indicates that these elements are 
the ones that are modified. This completes the discussion on the deflation 
procedure for N particles in unbounded flow. The theory for flow domains 
bounded by a container is considerably more involved and the deflation 
procedure is best described using projections onto the eigenspaces of arC. ts~ 
However, the final result there is also readily implemented numerically. 

The success of our iterative numerical method depends on the value 
taken by the spectral radius. We have observed numerically the (initially) 
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surprising but desirable result that the N-sphere system has essentially the 
same spectral radius as the single sphere. In other words, hydrodynamic 
interactions introduce only weak perturbations of the spectrum, thus opening 
the way for a number of tailor-made iterative algorithms. The origin of this 
fortuitous phenomenon is described in the next section. 

4.2. Spectral  Perturbat ions due to Hydrodynamic interact ions 

Hydrodynamic interactions induce a split in the spectrum, analogous 
to the situation with energy levels in quantum mechanics. Here, however, 
the spectral radius undergoes only a minor perturbation, even for relatively 
close surfaces, because the eigenfunctions (particle double-layer densities) 
interact rather weakly as force-free and torque-free disturbances. For inter- 
actions between two particles of arbitrary shape separated by a distance R, 
the spectral radius is perturbed from the one-particle values by at most a 
term of order R 3. The double-layer potentials in the eigenvalue problem 
correspond to force-free particles, so their decay persists at most by R-2, 
in effect appearing as stresslet fields far away from the particle. The reflections 
at the other particle are also force-free, so only the gradients of the incident 
field are relevant, thus leading to the O(R 3) perturbation. 

The situation for sphere--sphere interactions is even more fortuitous, 
The five degenerate eigenvalues at -3 /5  that determine the spectral radius 
of the single sphere correspond to a quadrupole field, whereas the stresslet 
field correspond to the unimportant eigenvalues at -1/5.  Explicit proofs 
are given in Karrila et aU 4~ The quadrupole field decays as R 3, and upon 
reflection at the other particle, excite, only the quadrupole moment. The 
Fax6n law for this moment involves the second derivative of the incident 
field] 51 thus leading to the extremely weak O(R 5) perturbation. This 
simple argument for the sphere-sphere interactions is now verified by direct 
calculation. 

Consider two equal spheres with their centers xl, x2 separated by a 
distance R =  I x j -  x2j as before. If R is very large, we may neglect inter- 
actions between the two and the eigensystem would simply be that 
obtained by superposition of the results for each sphere. The question is 
what happens as we decrease R. 

At this point, it may be helpful to draw an analogy with a similar 
problem for quantum mechanics, viz., the mixing of atomic orbitals to 
create molecular orbitals. For example, as shown in Fig. 4, we can mix the 
p. orbitals of two widely-separated atoms in either a bonding ( ~ -  ~2) or 
antibonding (~k~ + ~'2) fashion. The former builds up electron densities in 
the overlap region, while the latter creates an electron-deficient region near 
the newly created node. 
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( 

Fig. 4. 

Antibonding 

Bonding and antibonding combinations of p. ~rbitals. 

With these ideas in mind, we write the eigenfunctions for the two- 
sphere system as: 

q~.(1)=q~~ ~ c.iq~~ on S, (47) 
j ~ n  

(0.(2) = q~.~ + Z (0) C.k~0k (2) on Sz (48) 
kCxn 

where ~oj  are the eigenfunctions of the single-sphere problem. The eigen- 
function q~~ as a double-layer density generates a velocity field "vk" 
outside sphere 2. The inner product between this velocity field and the 
basis elements on the surface of sphere 1 is an important quantity. We 
introduce the notation 

fs -(~ dS (49) <~~176 = , YJ , vk 

so that on S j ,  

Ys K(X,~z)'9~~176176176 (50) 
J 

On the surface of sphere I, the eigenvalue problem ~f~(~)=2.q}.  
becomes 

iL(nO)~(nO) + E enJ)tJ~ ~ -t-2 <~)~ ~ ~  ~)~ 1 ) 
j ~ n  j 

E (511 
j r  
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The first and second terms on the left-hand side of this equation result from 
the fact that the yj- (o~ are eigenfunctions of Of restricted to S~, with eigen- 
values 2 (~ Looking at each mode, we find the following set of equations: [ " 

For j =  n: 2. = 2~~ (~~ ..,'ff~~ 1 (52) 

+ (9)~ ~f'~(k~ (53) For j :~ n" c} = -  (o) . ~o) 
2. - z ~  + (~.5~ J{'~(k~ 

Here, + denotes the sign used to construct the base solution, 
,r176 ) _+ ~.~ 

We have arrived at the desired result. The eigenvalues of the two-sphere 
system are given by those of the single-sphere problem, plus a small pertur- 
bation proportional to the interaction factor (~J~ o ~ ~  1, which 
we evaluate presently with an addition theorem. But first, we may estimate 
the R dependence of the spectral radius with this limited information. From 
the discussion for the single sphere, we know that the dominant eigen- 
functions (the ones with eigenvalue - 3 / 5 )  generate a Stokes quadrupole 
field, which decays as I x - x 2 [  3. The fact that j = n  determines the 
eigenvalue shift implies that we need the quadrupole moment induced on 
sphere 1, as claimed earlier. 

We require the following addition theorem for Stokes flow ~5'~6~" 

q~,,,,,,,l),, g)~,,(21), =(1 + 6,,,,,[n(n+ l ) n ' ( n ' +  1)] I'2 

rt.m ( n + ~ ) - R  '"+"'+" 
M ..... 

q,,,, n +  (n+  1)(n'+ 1) 

The factor of (1 +,q."'~ takes into account the jump between the surface 
~ n '  z 

density q~(r on $2 and the associated velocity field emanating from sphere 
2. Th& factor also ensures that the eigenvalues at - 1  do not get sh(fted, 
which we know has to be the case, since the eigenvalues corresponding to 
the null densities are always equal to - 1 ,  independent of the (multiparticle) 
geometry. 

We now apply these results with n = 2 and the eigenvalue as 2~ ~ = -3/5.  
The perturbation result for the two-sphere system becomes 

3 2 
�9 r ~2,.(2) = ( t % , . ( l ) ,  ) ).2(m) -~___~ 131 " 13) 

3 ) m + 1 4 (  4 )~ ._5  
= - ~ + ( - 1  2 + m  

3 ( - 1 )  ' '+ l  32R -5 
= -~- t -  5(m + 2)! ( 2 - m ) !  
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We may write these results explicitly as 

m = 0 :  ~ =  - ~  _ 

I m l = i :  2 = - ~  1+  R 5 

4 ] 
Irnl=2: 2 = - 5  I___~R ~ 

where, as before, +__ indicates the sign used in the mixing of the single- 
sphere eigenfunctions. There are five pairs, corresponding to m = - 2 ,  - 1 ,  
0, 1, 2, but two of these pairs are degenerate because m and - m  lead to 
identical perturbations of the system. The end result is that there are three 
distinct pairs with each pair consisting of a "bonding" and "antibonding" 
split, thus yielding six distinct levels. As with molecular orbitals, the value 
of m determines whether the " + "  or " - "  shifts the eigenvalue downward. 
The mathematical analysis is reminiscent of that encountered in the mixing 
of two d-atomic orbitals. 

In summary, the ten degenerate eigenvalues at - 3/5 of the decoupled 

0 . 0 2  , 

0.01 

0.00 

- 0 . 0 2  i , i m n 
2 3 4 6 O "/ 6 

R 

Fig. 5. Hydrodynamic interaction-induced splitting of the ou lermos t  eigenvalues of the 
two-sphere system, as a function of center-center separation R. Comparison of asymptotic 
and numerical results. 
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system split into a set of six distinct eigenvalues with multiplicities l, 2, 2, 
2, 2, and 1. The magnitude of the splits, as computed numerically and 
analytically, are in excellent agreement, as shown in Fig. 5. More impor- 
tantly, in contrast with the more familiar situation in quantum mechanics, 
the shift in the spectrum as a result of hydrodynamic interactions is 
actually quite small, and thus, as stated earlier, the deflate-and-iterate 
scheme for multiparticle problems requires the same number of iterations 
as in the single-particle problem. For the sphere, according to the discussion 
above, the spectral radius for the two-sphere remains approximately 0.6 
(the single-sphere result) at all configurations except almost touching 
spheres. 

4.3. Asynchronous Iterations 

The iterative solution described earlier is ideally suited for parallel 
machines. As shown in Fig. 6, each element of the product vector may be 
computed in parallel, and the algorithm can be implemented on both 
coarse-grained (few powerful processors linked together) and massively- 
parallel (many inexpensive processors linked together) designs. However, 
additional factors become important when we consider large (in number of 
unknowns) scale in the problems of actual interest. Indeed, for truly 
many-body interactions, the system matrix is so large that updating and 

m 
PARALLEL PROCESSING 

x +  1 = M xn + b 

Fig. 6. Implementation of the Jacobi iteration on a parallel computer. 
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collation of information from the network of processors to reconstruct the 
unknown vector for subsequent redistribution to all becomes a nontrivial 
task. In other words, communication of information between processors 
becomes the bottleneck. 

To reduce the flow of information, we replace the simple iterafive 
scheme described above (the Jacobi iterations) with asynchronous iterations 
that resemble iterative schemes of the block Gauss-Seidel type. Based on 
physical intuition, we expect interactions between boundary elements on 
one particle and also those between neighboring particles to be stronger 
than interactions between distant particles. We perform a number of local 
iterations per update from a distant particle. The strategy is designed for 
the situation where considerable time delays can be expected for information 
to reach from distant regions; rather than wait and do nothing, the 
CDL-BIEM performs local iterations, effectively decreasing the number of 
global iterations. 

Asynchronous iterations and time delays can introduce instabilities in 
a system that converges with Jaeobi iterations. For a given matrix with 
spectral radius less than one, the spectral radius of a subblock may be 
greater than one. In this case, the local updates will diverge. In our 
problem, the mathematical theory comes to the rescue once again. If the 
matrix is divided so that all boundary elements on the same particle reside 
in the same block, then every submatrix formed by a subcluster of particles 
conforms with the CDL-BIEM spectral theory for the postdeflation 
many-body problem--and thus the local iterations converge~ 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

We call the new method the completed double-layer boundary integral 
equation method (CDL-BIEM) because the boundary integral equation is 
obtained by completing a deficiency in the double-layer potential. The 
essence of the computational algorithm is that of an iterative solution 
falling in the general class of relaxation methods. The construction of the 
iterative scheme follows from a series of new mathematical theorems for 
integral representations for viscous nows, (3"4} An important feature of this 
method is that the system of equations remains well-conditioned with 
increasing size, Furthermore, on conventional, single-processor computers, 
computations time increases only as the square of the number of unknowns 
(and thus also as the square of the number of particles). An even more 
attractive feature is that the algorithm is parallel, so that the computation 
time t decreases with the number of processors. To summarize these effects, 
even in single-particle problems, our code running on a relatively small 
computer such as the Micro VAX II yields accurate solutions in about the 
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same time as the standard boundary integral method running on a Cray. 
As the number of particles is increased, the new method becomes even 
more attractive in comparison to older methods. 

CDL-BIEM is also well-suited for many-body problems. We have 
shown that hydrodynamic interactions induce only weak perturbations of 
the spectrum of the iteration operator and thus the spectral radius is 
essentially unchanged. This introduces great flexibility in the iterative 
solution of the system of equations. For truly many-body problems, we 
introduce processor processor communication scheduling, or asynchronous 
iterations, to reduce the level of communication. Numerical tests of the 
screening concept from suspension and polymer theories are a natural 
extension. We are on the threshold of another dramatic breakthrough in 
computational power, perhaps rivaling that brought by the popularization 
of the electronic digital computer. There are design projects under way in 
the computer industry to produce teraflop (10 j2 floating point operations 
per second) parallel machines. Clearly, only parallel algorithms will be able 
to take advantage of this revolution. 
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N O M E N C L A T U R E  

(, 

E 
E' I ,  

o 

F 

K 

M 
N 
r/ 

n 

N(.) 
fl 
R 
R(.) 

Sphere radius 
Container parameter 
Rate of energy dissipation 
Ambient rate-of-strain field 
Unit Cartesian coordinate vector 
Force 
Oseen tensor (Green's dyadic for the Stokes equation) 
Deflated double-layer operator 
Kernel of the double-layer operator 
Double-layer operator 
Matrix 
Number of unknowns 
Number density of particles 
Unit normal on a surface element 
Null space of an operator 
Pressure 
Separation between particle centers 
Range of an operator 
Rotlet or point-torque 
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r 

r 

S 
S 
T 
l 

t 
U 
U 

u 

X 

X 

6~ 
6 
2 

P 

2," 
ff 

q~ 

( . , . )  
( ~  

• 

radial spherical coordinate 
Position vector: particle center 
Particle surface 
Stresslet 
Torque 
Time 
Surface traction 
Translational velocity 
velocity 
Velocity 
Unknown vector in linear system of equations 
Position vector 

Particle label 
Particle label 
Kronecker delta 
ldemfactor 
Eigenvalue 
Viscosity 
Position variable for surface integrals 
Stress field of (#~8nil 
Stress tensor 
Double-layer density 
Rotational velocity of ambient fluid 
Rotational velocity 

Inner product (surface integral of vector dot product) 
Ensemble average 
Denotes adjoint of an operator 
Transpose of a matrix 
Orthogonal complement of a linear subspace 
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